Smart Learning Library

  • Beranda
  • Informasi
  • News
  • Bantuan
  • Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Arabic Bengali Brazilian Portuguese English Espanol German Indonesia Bahasa Jepang Melayu Persia Russian Thai Turkish Urdu

Search by:

All Author Subject ISBN/ISSN Advanced Search

Last search:

{{tmpObj[k].text}}
Image of PENGELOMPOKAN SISWA BERPRESTASI DENGAN K-MEANS CLUSTRING DAN ELBOW METHOD DI MA ALHOLILIYAH CIDAUN KELAS XI TAHUN 2024-2025

SKRIPSI IF

PENGELOMPOKAN SISWA BERPRESTASI DENGAN K-MEANS CLUSTRING DAN ELBOW METHOD DI MA ALHOLILIYAH CIDAUN KELAS XI TAHUN 2024-2025

ROZAK, MUHAMMAD RAPI ABDUL - Personal Name;

Abstrak
Penelitian ini bertujuan untuk mengelompokkan siswa kelas XI MA Alholiliyah Cidaun jurusan IPA dan IPS berdasarkan nilai akademik menggunakan algoritma K-means Clustering. Permasalahan utama adalah proses penilaian yang masih dilakukan secara manual tanpa analisis lanjutan, sehingga menyulitkan identifikasi siswa berprestasi secara objektif. Data yang digunakan mencakup nilai Bahasa Inggris, Matematika, Biologi, dan Kimia untuk jurusan IPA, serta Bahasa Inggris, Matematika, Ekonomi, dan Sosiologi untuk jurusan IPS, dengan total 95 siswa. Proses pengolahan dilakukan menggunakan RapidMiner, sedangkan penentuan jumlah cluster optimal menggunakan metode Elbow yang menghasilkan K=4 untuk IPA dan K=3 untuk IPS. Hasil pengelompokan menunjukkan bahwa siswa dengan capaian terbaik berada pada cluster_1 IPS serta cluster_0 dan cluster_3 IPA, sedangkan nilai terendah terdapat pada cluster_2 IPS dan cluster_1 IPA. Penerapan metode ini efektif dalam mendukung proses seleksi siswa berprestasi secara sistematis, cepat, dan berbasis data.
Kata kunci: Elbow, K-means, RapidMiner, Clustering, Hasil Belajar

Abstract
This study aims to group students of grade XI MA Alholiliyah Cidaun majoring in Science and Social Studies based on academic scores using the K-means Clustering algorithm. The main problem is the assessment process which is still carried out manually without further analysis, making it difficult to identify high-achieving students objectively. The data used includes English, Mathematics, Biology, and Chemistry scores for the Science major, and English, Mathematics, Economics, and Sociology for the Social Studies major, with a total of 95 students. The processing process was carried out using RapidMiner, while determining the optimal number of clusters using the Elbow method which produced K = 4 for Science and K = 3 for Social Studies. The clustering results show that students with the best achievements are in cluster_1 Social Studies and cluster_0 and cluster_3 Science, while the lowest scores are in cluster_2 Social Studies and cluster_1 Science. The application of this method is effective in supporting the selection process for high-achieving students systematically, quickly, and based on data.
Keywords: Elbow, K-means, RapidMiner, Clustering, Learning Outcomes


Ketersediaan
S250417004607.2 ROZ pPerpustakaan STMIK AMIKBANDUNGTersedia
Informasi Detil
Judul Seri
-
No. Panggil
607.2 ROZ p
Penerbit
: ., 2025
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
NONE
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subyek
-
Info Detil Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • JURNAL
Komentar

You must be logged in to post a comment

Smart Learning Library
  • Information
  • Services
  • Librarian
  • Member Area

About Us

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Search

start it by typing one or more keywords for title, author or subject

Keep SLiMS Alive Want to Contribute?

© 2025 — Senayan Developer Community

Powered by SLiMS
Select the topic you are interested in
  • Computer science, information & general works
  • Philosophy & psychology
  • Religion
  • Social sciences
  • Language
  • Pure Science
  • Applied sciences
  • Arts & recreation
  • Literature
  • History & geography
Advanced Search